80=16t^2+32

Simple and best practice solution for 80=16t^2+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80=16t^2+32 equation:



80=16t^2+32
We move all terms to the left:
80-(16t^2+32)=0
We get rid of parentheses
-16t^2-32+80=0
We add all the numbers together, and all the variables
-16t^2+48=0
a = -16; b = 0; c = +48;
Δ = b2-4ac
Δ = 02-4·(-16)·48
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{3}}{2*-16}=\frac{0-32\sqrt{3}}{-32} =-\frac{32\sqrt{3}}{-32} =-\frac{\sqrt{3}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{3}}{2*-16}=\frac{0+32\sqrt{3}}{-32} =\frac{32\sqrt{3}}{-32} =\frac{\sqrt{3}}{-1} $

See similar equations:

| 416=-16t^2+32t | | -15-3w=5w-2w | | 6-3(2y+3)=0 | | 10b=7-7 | | 5+4(3y+6)=0 | | x-4(1+3)=51 | | 10a+11=70 | | -27=-8x+5(x-3) | | 2x-35=14+2x | | 7a+12=84 | | -5x-5(2x+1)=-80 | | 5-4(3y+6)=0 | | -3(4x+5-3)+6=120 | | 4(4y+3)+3=5(6y-1)+2 | | 4(n-5)+6=-6 | | Z^3-7z^2+6z-10=0 | | 6x+8+11=0 | | Y^2+5y-14=y+2 | | 35+2x=17 | | P(T+4)=2y | | 2(5x-3)=10x+11 | | 5=4+m | | -129=-10v+1 | | 24=8-(-4+6v) | | 35=8(4y-3)-5 | | -127=-1-7a | | 3(y-5)=5y(3-y) | | -5-(-3v+5)=17 | | 4(2x+2)=59 | | -7=k/13 | | -6a+5(-2a-2)=-74 | | -9-4x=-x |

Equations solver categories